
What’s Happening Behind the Scenes of
the Google reCAPTCHA Control

I implemented reCAPTCHA version 2 on my website, replacing the version 1 code I’d had in place since

2010. (Doing this on a .NET website was not as straightforward as the Google documentation might lead

one to believe, by the way.)

The version 1 code made use of a DLL and registration of a web user control to present the user with a

pair of words, or images with text, which the user must read and type.

The version 2 code dispenses with those in favor of a Web services-based approach to present the user

with a checkbox control beside the prompt, “I’m not a robot”, and if needed, a grid of images from

which the user must make selections based on instructions (“Select all of the pictures which contain

grass.”)

I was seeing some long delays in both development and production environments when the contact

form would load, and then the operation would time out in the production environment (but succeed in

development). At length, I really became curious about what was going on during that page load in

particular… so I fired up Wireshark to peek.

Wireshark

Wireshark is a software tool that allows the user to monitor network traffic. It records entries in a

tabular format based on packet data and metadata: sent from, sent to, protocol type, payload (assuming

the traffic isn’t encrypted). There are books and other media available that discuss the ins-and-outs of

using Wireshark to perform packet analysis.

https://www.google.com/recaptcha/intro/
https://www.wireshark.org/
https://www.wireshark.org/#learnWS

Because my production site operates using a secure protocol, the information coming from monitoring

activity there isn’t quite as useful as the dev environment data, insofar as the data payloads are all

encrypted (p.s. – I can confirm the secure protocols are working!).

Loading the Contact Form

I used Wireshark to record the events that followed clicking the “contact” link on a local development

instance of my website. I wanted to look at the development instance partly because it uses plain ol’

Hypertext Transfer Protocol – that is, no encryption.

The first few lines of code on the Web Form are used for loading various scripts and style sheets, most of

which are located in local subdirectories, with one notable exception being the font service I use. The

font service code is embedded in the master page, so it will always be the first code that reaches out

from the server. The reCAPTCHA API code is the second such call – it dials Google to retrieve the

JavaScript API.

Notice please that the script is being called over an encrypted channel.

Summary
Wireshark shows that data is transacted with three servers: www.google.com, www.gstatic.com, and

gstaticadssl.l.google.com. The server at www.google.com seems to broker the subsequent

conversations, sort of like www.google.com was leading a telephone conference call. All of the

conversations were completed in just over three and a half seconds.

Details
Let’s look at these in parts generally corresponding to each conversation.

The first traffic is sent to www.google.com (recall the URL for the API we need is

https://www.google.com/recaptcha/api.js). The conversation spanned 0.32s:

You can tell the conversation occurred over a secure protocol in two ways: the protocol is listed as TLS,

and the description of the data in the “Info” column only reads “Application Data.” Perhaps a third hint

might be the final message sent from my local machine was directed to port 443 of the

www.google.com server.

A second conversation occurred among my machine, www.google.com and a second Google server at

www.gstatic.com:

At this point, conversation with www.gstatic.com ended, and the server at www.google.com brought a

server at gstaticadssl.l.google.com into the mix.

Conversations among all participants completed in one-third of a second.

Checking the reCAPTCHA Form

The next significant action occurs once the contact form is filled out and the user checks the “I’m not a

robot” box on the form, but before submitting the form.

Summary
In this instance, checking the reCAPTCHA form box created about 0.75 seconds of traffic between my

local machine and two Google servers – both members of the 1e100.net domain (I immediately think of

“Leeloo”).

Details
The first conversation is with a server initially identified by its IP address of 173.194.202.105, and later

identified as pf-in-f105.1e100.net.

http://www.imdb.com/character/ch0003666/

The second conversation is with a server initially identified by its IP address of 172.217.9.131, and later

identified as dfw25s26-in-f3.1e100.net.

At this point, the first server re-enters conversation:

The exchanges lasted approximately 0.7s.

Note that this traffic is the product of just checking that box, with the return of a successful result. Had

the control programming determined that more verification was needed, we may have seen much more

traffic than this.

Post-Submit

As a function of curiosity, I also looked at the traffic produced after the submit button was clicked. In the

code behind, a request of about 600 bytes is sent to Google for the results of the reCAPTCHA validation.

A 512-byte response is returned as a stream in JSON format.

Details
“Leeloo” is back for this round, too; notably, dfw25s26-in-f14.1e100.net (which is not the same server

as before), and pc-in-f104.1e100.net. (A third server, pj-in-x93.1e100.net, was attempted to be reached

over IPv6 but never responded.) Traffic follows:

Actual conversation between my machine and pf-in-f104.1e100.net – during which the request and

response are transmitted – spanned approximately 1/3rd of one second.

The traffic that followed this exchange was conversation with the mail server -- the actual email traffic,

in SMTP and IMF protocols. That traffic began about 1.5s after the traffic pictured above, and lasted for

about 0.7 sec.

Summary

reCAPTCHA will “phone home” to Google on three events:

- When the Web Form is loaded (to retrieve the JavaScript for the API),

- When the “I’m not a robot” control is checked, and

- After the form is submitted, to query the validation results.

When the web form is loaded, a server at www.google.com will be queried and the reCAPTCHA API will

be retrieved. Other servers involved are at www.gstatic.com and gstaticadssl.l.google.com.

Upon checking the “I’m not a robot” box on the reCAPTCHA control, you may expect communications

with two Google servers located on the 1e100.net domain lasting about three-quarters of one second

(though you can expect this traffic to continue longer than this if additional validation is required).

Finally, after the form is submitted, a request is sent back to Google for the results of the reCAPTCHA

validation. The response is returned as a stream. Two servers on the 1e100.net domain are involved,

with traffic lasting approximately 1/3rd of a second. This traffic precedes the actual SMTP traffic for

which the reCAPTCHA control acts as a gatekeeper.

Conclusion

I used Wireshark traffic analysis software to explore reCAPTCHA-related network activity in three events

of the page lifecycle: when a web form containing the control is loaded, when the reCAPTCHA control is

clicked, and when the web form is submitted, and identified several servers involved in the exchange of

traffic between Google and the client.

I hope this document offered some idea of what traffic is being generated “under the hood” of version 2

of the Google reCAPTCHA control, and among whom.

